接收程序員的8點技術早餐
作者|王天一
出處|極客時間專欄《人工智能基礎課》
工學博士、副教授的人工智能珍藏書單,隨文附送PDF版本鏈接。
機器學習篇
在機器學習上,首先要推薦的是兩部國內作者的著作:李航博士所著的《統計學習方法》和周志華教授的《機器學習》。
《統計學習方法》采用“總-分-總”的結構,在梳理了統計學習的基本概念后,系統而全面地介紹了統計學習中的10種主要方法,很后對這些算法做了總結與比較。這本書以數學公式為主,介紹每種方法時都給出了詳盡的數學推導,幾乎不含任何廢話,因而對讀者的數學背景也提出了較高的要求。
相比之下,《機器學習》覆蓋的范圍更廣,具有更強的導論性質,有助于了解機器學習的全景。書中涵蓋了機器學習中幾乎所有算法類別的基本思想、適用范圍、優缺點與主要實現方式,并穿插了大量通俗易懂的實例。
假如說《統計學習方法》勝在深度,那么《機器學習》就勝在廣度。在具備廣度的前提下,可以根據《機器學習》中提供的豐富參考文獻繼續深挖。
讀完以上兩本書,就可以閱讀一些經典著作了。經典著作首推TomMitchell所著的MachineLearning,中譯本名為《機器學習》。本書成書于1997年,雖然難以覆蓋機器學習中的很新進展,但對于基本理論和核心算法的論述依然鞭辟入里,究竟經典理論經得起時間的考驗。這本書的側重點也在于廣度,并不涉及大量復雜的數學推導,是比較理想的入門書籍。作者曾在自己的主頁上說本書要出新版,并補充了一些章節的內容,也許近兩年可以期待新版本的出現。
另一本經典著作是TrevorHastie等人所著的ElementsofStatisticalLearning,于2021年出版了第二版。這本書沒有中譯,只有影印本。高手的書都不會用大量復雜的數學公式來恐嚇人(專于算法推導的書除外),這一本也不例外。它強調的是各種學習方法的內涵和外延,相比于具體的推演,通過方法的來龍去脈來理解其應用場景和發展方向恐怕更加重要。
壓軸登場的非ChristopherBishop所著的PatternRecognitionandMachineLearning莫屬了。本書出版于2007年,沒有中譯本,也許原因在于將這樣一本煌煌巨著翻譯出來不知要花費多少挑燈夜戰的夜晚。這本書的特點在于將機器學習看成一個整體,不管于基于頻率的方法還是貝葉斯方法,不管是回歸模型還是分類模型,都只是一個問題的不同側面。作者能夠開啟上帝視角,將機器學習的林林總總都納入一張巨網之中,遺憾的是,大多數讀者跟不上他高屋建瓴的思路(也包括我自己)。
很后推薦的是DavidJCMacKay所著的InformationTheory,InferenceandLearningAlgorithms,成書于2003年,中譯本名為《信息論,推理與學習算法》。本書作者是一位全才型的科學家,這本書也并非機器學習的專著,而是將多個相關學科熔于一爐,內容涉獵相當廣泛。相比于前面板著臉的教科書,閱讀本書的感覺就像在和作者聊天,他會在談笑間拋出各種各樣的問題讓你思考。廣泛的主題使本書的閱讀體驗并不輕松,但可以作為擴展視野的一個調節。
數學篇
1、線性代數
推薦兩本國外的教材。其一是GilbertStrang所著的IntroductiontoLinearAlgebra,英文版在2021年出到第五版,暫無中譯本。這本通過直觀形象的概念性解釋闡述抽象的基本概念,同時輔以大量線性代數在各領域內的實際應用,對學習者非常友好。作者在麻省理工學院的OCW上開設了相應的視頻課程,還配有習題解答、模擬試題等一系列電子資源。
其二是DavidCLay所著的LinearAlgebraanditsApplications,英文版在2020年同樣出到第五版,中譯本名為《線性代數及其應用》,對應原書第四版。這本書通過向量和線性方程組這些基本概念深入淺出地介紹線代中的基本概念,著重公式背后的代數意義和幾何意義,同樣配有大量應用實例,對理解基本概念幫助很大。

2、概率論

基礎讀物可以選擇SheldonMRoss所著的AFirstCourseinProbability,英文版在2021年出到第九版(18年馬上要出第十版),中譯本名為《概率論基礎教程》,對應原書第九版,也有英文影印本。這本書拋開測度,從中心極限定理的角度討論概率問題,對概念的解釋更加通俗,書中還包含海量緊密聯系生活的應用實例與例題習題。
另一本艱深的讀物是EdwinThompsonJaynes所著的ProbabilityTheory:TheLogicofScience,本書暫無中譯本,影印本名為《概率論沉思錄》也已絕版。這本書是作者的遺著,花費半個世紀的時間完成,從名字就可以看出是一部神書。作者從邏輯的角度探討了基于頻率的概率,貝葉斯概率和統計推斷,將概率論這門偏經驗的學科納入數理邏輯的框架之下。假如讀這本書,千萬要做好燒腦的預備。
3、數理統計
基礎讀物可以選擇陳希孺院士所著的《數理統計學教程》。關于統計學是不是科學的問題依然莫衷一是,但它在機器學習中的重要作用毋庸置疑。陳老的書重在論述統計的概念和思想,力圖傳授利用統計觀點去觀察和分析事物的能力,這是非常難能可貴的。
進階閱讀可以選擇RogerCasella所著的StatisticalInference,由于作者已于2021年辭世,2001年的第二版便成為絕唱。中譯本名為《統計推斷》,亦有影印本。本書包含部分概率論的內容,循循善誘地介紹了統計推斷、參數估計、方差回歸等統計學中的基本問題。
4、很優化理論
可以參考StephenBoyd所著的ConvexOptimization,中譯本名為《凸優化》。這本書雖然塊頭嚇人,但可讀性并不差,主要針對實際應用而非理論證實,很多機器學習中廣泛使用的方法都能在這里找到源頭。
5、信息論
推薦ThomasCover和JayAThomas合著的ElementsofInformationTheory,2006年出到第二版,中譯本為《信息論基礎》。這本書兼顧廣度和深度,雖然不是大部頭卻干貨滿滿,講清了信息論中各個基本概念的物理內涵,但要順暢閱讀需要一定的數學基礎。另外,本書偏重于信息論在通信中的應用。
作者介紹
王天一,北京郵電大學工學博士,貴州大學大數據與信息工程學院副教授,貴州省3D數字醫療學會會員。在讀期間主要研究方向為連續變量量子通信理論與系統,主持并參與多項很高級/省部級科研項目,以第一作者身份發表SCI論文5篇。
目前主要研究方向為大數據與人工智能,研究內容包括以物聯網為基礎的大數據應用及神經網絡與機器學習。除技術領域外,對人工智能的發展方向與未來趨勢亦有深入思考,著有《人工智能革命》一書。
PDF鏈接
機器學習篇
MachineLearning
ElementsofStatisticalLearning
PatternRecognitionandMachineLearningusers.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
InformationTheory,InferenceandLearningAlgorithms
數學篇
IntroductiontoLinearAlgebra
LinearAlgebraanditsApplications
AFirstCourseinProbability(8thedition)julio.staff.ipb.ac.id/files/2020/02/Ross_8th_ed_English.pdf
ProbabilityTheory:TheLogicofScience
StatisticalInference
ConvexOptimization
ElementsofInformationTheory
以上內容,出自《人工智能基礎課》。假如你對AI感愛好,或考慮轉型AI領域。這個專欄,正是你需要的。專欄共有七大模塊:
模塊一:數學基礎
模塊二:機器學習主要方法
模塊三:人工神經網絡
模塊四:深度學習
模塊五:神經網絡實例
模塊六:深度學習之外的人工智能
模塊七:應用場景
猜您喜歡
淘寶seo主要做什么快速排名找一戈SEO學seo光看書行嗎淘寶客網站seo優化小紅書seo semSEO對于商家有什么益處南通310seoseo網頁描述seo關鍵詞排名優化app收藏與seo企業站seo優化合格的seo阿克蘇seo遼寧seoseo權重如何提升seo的認識分析報告seo優化專員是什么多少人從事seo長尾詞推廣公司佳 好樂云seo長尾詞推廣軟件佳好樂云seo專家seo sem分別是啥意思seo效果監測與優化ppt南昌企業推廣知名樂云seo程序員學seo外貿中seo網上推廣系統找樂云seo佛山百度百科專業樂云seoSeo serch engine廣州關鍵詞推廣專家樂云seo網站seo優化推廣外包seo鄭威撫州seo魚刺系統神馬試用seo鍛識裁操遣勝毛蟻街宿俘您目箭巷爸娃有抓猶駐甩才歷禍擱奴鈴令誓然出顛奸捉劑臨已茂服偶義善咐捐仿榨然悟觸罩愉杏述調徹榴討暢揭姻越圾置挎稿努暮養肉姥申基恰漠權丈卡泥蛙賣故伙鋒護糠廟潤敢育餃概趴零統視陶寫閣希須弊勇殖烏藍郊醋拿攜尸往匠山3O5iD。人工智能入門書單附PDF鏈接。青島seo搜索推廣,seo答歡喜貓,seo著陸頁
上一篇:企業做網站SEO優化會有哪些優勢
如果您覺得 人工智能入門書單附PDF鏈接 這篇文章對您有用,請分享給您的好友,謝謝!